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Abstract

This paper describes a data parallel method for polygon rendering on a massively parallel machine. This

method, based on a simple shading model, is targeted for applications which require very fast rendering

for extremely large sets of polygons. Such sets are found in many scienti�c visualization applications.

The renderer can handle arbitrarily complex polygons which need not be meshed. Issues involving load

balancing are addressed and a data parallel load balancing algorithm is presented. The rendering and

load balancing algorithms are implemented on both the CM-200 and the CM-5. Experimental results

are presented. This rendering toolkit enables a scientist to display 3D shaded polygons directly from

a parallel machine avoiding the transmission of huge amounts of data to a post-processing rendering

system.

1 Introduction

In recent years, massively parallel processors (MPPs) have proven to be a valuable tool for performing

scienti�c computation. The memory systems on this type of computer are far greater than those

found on traditional vector supercomputers. As a result, scientists who utilize these MPPs can execute

their three dimensional simulation models with a much �ner grid resolution than previously possible.

These extremely large grid sizes prove to be both a blessing and a curse. The �ner grids allow for

better simulation of the underlying physics. However, the �ner grids also cause a data explosion when

visualization and analysis are applied to them. A fully populated 64K CM-200 has 8 gigabytes of

physical memory. A 1024 node CM-5 contains 32 gigabytes of physical memory. While it is true that

time-steps in current simulations don't utilize the entire memory systems of these machines, it is not

uncommon for a data set from a single time-step in a dynamic simulation to be in excess of several

gigabytes.

Geometry provides an excellent representation of simulations in the visualization process. Some

scienti�c simulations contain explicit geometry. For example, material interface boundaries may be

explicitly represented. For simulations which do not contain explicit geometry, there are a plethora

of visualization techniques which generate geometry as an intermediate representation: isosurfaces,

particles, spheres, vectors, icons, etc. In some cases, such as sparse data sets, geometry extraction

proves to be a compression technique without information loss. However, it is more typical for geometric

extraction techniques to generate larger amounts of data than is present in the original data set[13].
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One proven analytical technique for scienti�c visualization is the generation of isosurfaces. Two

common methods for visualizing isosurfaces are volumetric rendering with a speci�c opacity map and

the extraction of 3D contours[17, 18]. Volumetric techniques directly render the data set into an image.

The rendering process, especially for large non-uniform data sets, can be quite time consuming[7]. This

poses a problem if the viewing angle is not known a priori and needs to be determined interactively.

Contouring techniques, on the other hand, extract a geometric representation of the speci�ed contour(s).

Typically, these are in the form of polygons. An advantage of this class of techniques is that the view

direction can be changed interactively by rendering the polygons at high frame rates.

Recent research results have shown that 3D contours can be e�ciently extracted at interactive rates

from large dynamic data sets on massively parallel processors[13]. These techniques can generate over

1.24 million polygons for each time-step of a dynamic simulation with a grid size of only 2563.1 These

large polygon sets impede interactive visualization on machines with dedicated graphics hardware in

two ways: the amount of local-area network tra�c and the total number of polygons throughput for the

dedicated graphics hardware. In the simplest case (disregarding color information), each vertex of each

polygon consists of 3 oating point locations and 3 oating point normal positions or 24 bytes/vertex.

With 250,000 polygons (assuming triangles), this is 18Mbytes per time-step. To transfer this size of data

on an ethernet, the best-case transfer time is 14.4 seconds and the average-case transfer time is much

worse. Obviously, the amount of data overloads the network capacity. Additionally, 250,000 polygons

is at the limit of disjoint polygons/second which state of the art graphics engines can render.

One solution would be to move the entire data set over to the workstation and generate the isosurfaces

locally utilizing optimization techniques such as spatial decomposition. Another similar solution would

be to analyze the raw data set with a commercially available visualization tool such as AVS, Explorer,

etc. In addition to network transport issues, the problem with both of these solutions is that the size

of the data set overwhelms the workstation. The size of the raw data can be over 128Mbytes per time

step. In addition to the network problems previously mentioned, our experience is that data sets of

this magnitude cause the workstation to page excessively with memory page faults when generating

the isosurface. While it is true that environments such as AVS are being ported to MPPs, it has been

our experience that the geometry component of these environments is not supported on the MPP but

is still utilized on the workstation. The necessitates the transport of data, albeit �ltered data, to the

workstation.

A more appropriate solution would be to render the geometry on the MPP where the data already

exists. This is completely compatible with the previously described MPP isosurfacing techniques and

utilizes the power of the massively parallel computer to generate an image. The goal of this research

is to develop a rendering algorithm which is e�cient for large numbers of polygons.2 For such large

polygon sets, we make the assumption that most of the polygons will cover a relatively small number

of pixels since scienti�c data sets tend to produce such polygons. As we will show, image generation

time is much less than direct volume rendering and network tra�c is limited to the image size rather

than the data size. Additionally, this model extends the usefulness of visualization environments such

as AVS or Explorer since images are transferred to a workstation rather than full, or reduced, data

sets which still require further processing. Another bene�t of this approach is the capability of directly

calling rendering functions from the running computational model. This allows not only for simulation

monitoring/steering but also has proven to be an extremely useful tool in the debugging process.

In the next section, previous work in this �eld will be reviewed followed by a description of the data

1Currently, this is not considered a large data set. Typically simulations on an MPP machine use grid resolution

upwards of 5123.
2We consider 250K and upwards a large polygon set.
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Figure 1: Standard Graphics Pipeline

parallel rendering algorithm. Load balancing is a critical issue which will be addressed. Results from

experiments on both a CM-200 and a CM-5 will be presented.

2 Related Work

An increasing number of parallel polygonal rendering algorithms have been developed. The main strat-

egy has been to perform parallelization in two stages: scan conversion and rasterization. This strategy

follows the gross functionality which is implemented in most hardware graphics pipelines. The standard

graphics pipeline is shown in Figure 1. Polygons are transformed from world space to screen space,

clipping to the screen is performed, polygons are scan converted, and hidden surface elimination is

performed. Lighting can be applied either to the vertices before scan conversion (Gouraud shading) or

at each pixel (Phong shading).

Scott Whitman investigated the problem of polygonal rendering on a shared memory massively

parallel processor, the BBN TC-2000[20]. He split the standard graphics pipeline into three stages:

front-end, rasterization, and back-end. In the front-end stage, the polygons are read into the system,

transformed, back-face culled, clipped to the screen, and stored in shared memory. When the polygons

are stored in shared memory, a bucketization is performed to determine in which image tiles the polygon

lies. The bounding box is used as the determinant. The rasterization phase is similar to the standard

graphics pipeline. Polygons are scan converted, shaded, Z-bu�ered, and �nished scan lines are stored in

a virtual frame bu�er. The back-end writes the virtual frame bu�er to the actual frame bu�er. Whitman

explores many di�erent tiling schemes but the basic parallel rendering follows the steps outlined.

Thomas Crockett and Tobias Orlo� implemented a standard scan-line conversion algorithm on a

distributed memory system message passing, the INTEL iPSC/860[6]. They approached the problem

by combining the �rst three stages of the standard graphics pipeline and splitting the rendering process

into two distinct steps: splitting polygons into trapezoids and rasterizing the transformed trapezoids.

They evenly distributed the polygons to all processors and also divided the image space into equally

sized horizontal strips. Thus, their algorithm achieves both object space and image space parallelism.

The algorithm alternates between splitting triangles into trapezoids and rasterization.

Fiume, Fournier, and Rudolph presented a spanning scan line algorithm which ran on a simulator

for an ultracomputer[8]. They proposed language extensions to implement a Z-bu�er. The algorithm

assigned each PE a span consisting of a trapezoidal or triangular regions. The PEs synchronized at

the end of processing for each scan line. This led to a load balancing problem. The authors suggest



splitting the scan line if it is greater than some M number of pixels.

Crow, Demos, Hardy, McLaughin, and Sims utilized a Connection Machine, CM-2, to develop and

implement a photorealistic renderer[9]. Their goal was to provide very high quality rendering for one

of the �lm production houses in Hollywood. Since they were working on a SIMD machine, they chose

to program their algorithm in a data parallel manner. They split the traditional polygonal rendering

pipeline into four stages: transforms, clipping, scan conversion and shading. Rather than following

earlier approaches on the CM-2, they assigned each of the vertices to a processor for transformation.

The transformation matrices were passed one after the other and applied to the vertices. Clipping was

done by assigning one polygon to each processor. Scan conversion was handled similarly. Shading was

handled by assigning a processor to each pixel. Their algorithm was e�ective for hundreds of thousands

of polygons with complex photo realistic rendering features although no timings were presented.

Schroder and Drucker describe a data parallel ray-tracing algorithm for heterogeneous databases[19].

Although ray-tracing is a di�erent problem than polygon rendering by scan coversion, we include this

related work since it provides an alternative to rendering on a massively parallel processor. Their

algorithm addresses the load balancing problem by continually remapping available resources. They

start by allocating one processor per ray. Each ray processor allocates the number of processors required

to test insections with objects. As rays travel down through the ray-tree, processors sets are continually

allocated. The time to render scenes containing small number of objects (7381 spheres and one polygon),

varied from 98.3 to 118.7 sec on a 32K CM-2. Although the algorithm produces ray-traced images, the

time is much slower than required. As pointed out, we are interested in rendering upwards from 250K

polygons.

3 Parallel Progamming Models

Architecturally, MPPs fall into two classes of machine: MIMD and SIMD/SPMD. Similarly, there are

two programming models for parallelism which are exploited in massively parallel systems: control

parallelism and data parallelism.

The control parallel model divides a task up into a number of subtasks that can run concurrently.

For example, one could assign each stage of the rendering pipeline to a processor. Each of these tasks

can execute concurrently and independently. It is not necessary for the tasks to execute in lockstep.

Typically, there is some synchronization barrier which synchronizes these independent tasks for the

next step in the process. Since each of the tasks execute independently, this model maps well onto

MIMD architectures such as the CM-5 from Thinking Machines, Inc. [5] and the Paragon XP/S from

the Scienti�c Supercomputer Division of Intel, Inc. [1].

In the data parallel model the same operation is performed on all the selected data elements. For

example, given an array of numbers, a constant could be added to each number. In the data parallel

model this operation would logically occur simultaneously on each element of the array. Actual hardware

may or may not perform this operation simultaneously on all selected data elements. This would depend

on whether or not enough physical processors exist for each data element. In the case where there is

more data than processors, each physical processor is given a number of data elements upon which

it operates. Each of these data elements is considered a virtual processor. The concept of a virtual

processor allows one to treat the program as if there were a physical processor per data item. This model

maps well onto SIMD/SPMD architectures such as the CM-200 and CM-5 3 from Thinking Machines,

Inc.[4], the MP1 from MasPar Computer Corp. [2], and the Pixar Image Computer [16].

3The CM-5 can actually be programmed with either model. The Run Time System has support which causes the

machine to run as a SPMD MPP.



It has been recognized that for some problems the data parallel model is somewhat easier to program

than the control parallel model. Modern scienti�c compilers, such as Fortran 90 and C*, take advantage

of the data parallel model in their language constructs. Furthermore, it has been shown that data parallel

programs can achieve good speedup on MIMD architectures [10].

4 A Data Parallel Renderer

The choice to employ the data parallel programming model for the polygonal rendering algorithm was

made for several reasons. Our computing facilities include several Connection Machines from Thinking

Machines Corporation. While the CM-5 at our site is a MIMD MPP, the CM-200s are strictly SIMD

MPPs. It was our desire to develop an algorithm which would be portable to both machines. Secondly,

the scienti�c applications which run on these MPPs utilize CMFortran as their primary language. Ease

of use was a high priority so we wanted to develop an algorithm suite which would integrate well with

existing applications. Lastly, we wanted a rendering environment which would take advantage of the

CM/AVS visualization software on the CM-5 yet perform rendering in near real-time. Since the current

version of CM/AVS relies on the workstation (the AVS kernel) to perform rendering, performance su�ers

for large data sets due to the poor response time seen with network tra�c. Additionally, CM/AVS

currently is restricted to the data parallel programming model on the CM-5.

The basic idea behind the data parallel renderer is to maximize the number of operations occurring

in parallel while minimizing communication. While this trait is desirable in both data parallel and task

parallel programming models, the SIMD/SPMD nature of data parallel programs imposes additional

constraints. In data parallel programs, there is only one thread of control. For e�cient programs,

it is necessary to maximize the set of active processors at any given step in an algorithm. This is

accomplished by judicious assignment of data to the processors, sometimes referred to as layout. To

determine the optimal layout for the rendering process, let us examine the previously described standard

graphics pipeline with respect to data operations. The basic steps are as follows:

1. transform the polygons according to interactive controls (rotations, translation and scaling)

2. transform the polygons from world space to screen space and clip polygons which are outside the

viewport

3. shade the vertices

4. scan convert the polygons

5. clip the line segments against the viewport

6. perform hidden surface elimination

The �rst step is to transform the polygons by applying desired rotations, translations and scalings.

This is accomplished by building a 4 x 4 homogeneous a�ne transformation matrix constructed from

the individual transformations. This transformation matrix is applied to each vertex resulting in trans-

formed polygons as desired. The key point is that all operations are performed on the vertices.

The next step transforms the polygons from world space to screen space by applying a perspective or

orthogonal transformation to each of the vertices. This step can be combined with the previous step by

correctly concatenating the perspective (or orthogonal) transformation matrix with the transformation

matrix representing the desired rotations, translations and scalings. All operations are performed on

the vertices.



We could perform back-face culling at this point. However, this introduces a conditional into the

data parallel execution stream and as long as there are many more polygons than processors, it is no

less e�cient to render the back-facing polygons even though they'll most likely be occluded by some

other object. The implementation of the renderer includes back-facing culling.

Next, shading is performed for each polygon. In this implementation, we are optimizing for speed.

Therefore, we perform simple Gouraud shading. In Gouraud shading, the shading is computed at each

vertex and then linearly interpolated across an edge when forming a scan line segment and linearly inter-

polated across the scan line segment during rasterization, resulting in a smoothly shaded object. More

advanced shading techniques would be easy to implement. Like the �rst two steps, all the operations

are performed on the vertices.

The fourth step scan converts the polygons by determining which polygon edges intersect a particular

scanline and interpolating the X, Z and shaded color information along the polygon edge to determine the

value for a particular Y scan-line. We start the scan-conversion process by �nding, for each polygon, any

intersections that a scan line makes with each of the polygon sides. Since polygons completely outside

the viewport are ignored, there must be at least two intersections but, depending on the polygon shape,

there may be many intersections. In order to process a general polygonal shape, the polygon scan line

intersections are sorted in ascending X order and grouped into line end pairs. The even-odd rule is then

used to select the segments that are inside the polygon[15]. This operation is performed on polygon

edges.

Next, the line segments which are completely outside the viewing window are discarded. This oper-

ation is performed on all line segments generated from the scan conversion step.

Hidden surface elimination is accomplished by employing a parallel Z-bu�er algorithm[11]. This is

done by rasterizing the line segments produced from the scan conversion process, clipping the resulting

pixels against the viewport and then Z-bu�ering the non-clipped pixels. This operation is performed

on pixels.

The �rst three steps operate on vertices while the fourth step operates on polygons. The �fth step

operates on line segments and the �nal step operates on pixels. This analysis by data operations provides

an excellent method for data layout.

If we strictly followed this, we would remap the virtual processors from vertices to polygons to line

segments to pixels. The remapping of virtual processors involves general communication which is costly.

If we map each polygon to a virtual processor and then iterate over the vertices within each polygon,

we can eliminate one of the costly communications. The trade o� is that this might result in a load

balancing problem. When the polygon set contains polygons with varying numbers of vertices, iterating

over the vertices within a polygon will result in idle virtual processors. The occurs when the iteration

reachs the last vertex for some polygons while the polygons with more vertices still have remaining

vertices to be processed. This can be mitigated by re-triangulating the polygons resulting in equal

number of vertices for each polygon[14]. When this is the case, there is no load balancing problem since

the steps involving vertices are perfectly balanced.

The data layout starts by assigning each polygon to a virtual processor. This layout is utilized by

steps one through four. The scan conversion step generates line segments. These are each assigned

a virtual processor. The �fth step marks as inactive, the virtual processors whose line segments fall

outside the viewport. The last step uses the remaining line segments to generate pixels which are

assigned to virtual processors used in the Z-bu�ering. Thus, there are only two remappings. The �rst

four steps operate on objects thereby performing object space parallelism where as the last two steps

operate on line segments and pixels thereby performing image space parallelism.

The most interesting parts of the algorithm are the scan conversion and Z-bu�ering. Let us look



more closely at those steps.

To save time and maximize the parallelism across polygons, a modi�ed scan line conversion algorithm

was used [12]. This algorithm is not restricted to convex polygons and scan converts arbitrarily complex

polygons including those with holes. For this algorithm, we make the assumption that the polygonal set

consists of large numbers of small polygons. We have found this is a valid assumption since the target

application of this renderer is scienti�c data, particularly data derived from very large computational

models. Typical polygonal set sizes can range from 100,000 to millions of polygons [13]. This algorithm

takes advantage of the fact that each polygon has relatively few scan lines passing through it compared

with the number of scan lines in the image.

The scan conversion process iterates over the maximum number of scan lines through any polygon.

Since scan conversion is concurrently executed for all polygons in parallel, it is bounded by the maximum

number of scan lines within any polygon. The number of iterations necessary to process the entire set

of polygons is the maximum number of scan lines spanning any polygon. This is, of course, the polygon

with the maximum image-space height in Y. At the initiation of this step, the �rst scan line within every

polygon is processed simultaneously. As the number of scan lines processed approaches the maximum,

fewer polygons will be processed, since some polygons, the ones with a smaller number of scan lines

passing through them, will have completed the scan conversion process. We address this load balancing

issue in the next section.

The line segments are sorted into ascending X order as previously described. At this stage, the end

points and color data for the segments are gathered into a data structure such that the start and end

points are assigned to virtual processors in a data parallel manner. This utilizes generalized router

communication to map the line segments to virtual processors.

In the Z-bu�ering step, line segments from the previous steps are converted to pixels. Processing the

lines to pixels in parallel requires iterating over the number of pixels in the X direction of the longest

line. The �rst pixels from all the lines are processed, then the second, etc. For the shorter line segments,

the virtual processors are marked as inactive when the segment completes this pixelization process. The

Z and color values for the pixels are interpolated from the line end points. Any pixels that lie outside

the viewport are clipped.

Since the polygon scan lines are processed in parallel, there is a good possibility that many of

the segments will generate pixels with the same image location. The Connection Machine can not

handle these "collisions" correctly with standard inter-processor communications. The generalized data

router must be used in conjunction with a sendmax combiner [3]. This utility uses the router for fast

communications but it presents another problem: the utility can only work with one sending array at

a time, and the color value for the pixel needs to be stored in the image array for the pixel which has

the maximum z value. This problem was solved by combining the z values and the color value into a

double precision array before the Z-bu�er compare. These are the values saved into the Z-bu�er. When

displaying the image, the image data is extracted from the Z-bu�er.

In the renderer, there are two key loops, one for scan converting polygons into line segments and one

for Z-bu�ering the line segments. The bulk of the renderer's computation time is spent processing these

loops. Both of these loops have the following general form:

max_iteration = MAXIMUM_VALUE(iter)

do i=1,max_iteration

WHERE (i .le. iter)

...loop code...

ENDWHERE

enddo



The parallel array iter contains the number of loop iterations for each data element processed in the

loop. The number of loop iterations is data-dependent. In the scan conversion code, iter contains the

number of scan lines in each polygon. During each iteration, a di�erent scan line from each polygon is

processed in parallel.

In the data parallel programming model, the loop executes for the maximum number of iterations.

In the best case, the iteration values are the same. Such a loop is said to be balanced. If the iteration

values vary over a wide range the loop is said to be unbalanced. Unbalanced loops are ine�cient. As

the loop progresses, processors become idle because they have �nished their iterations. A second source

of ine�ciency results from any serial code in the loop being repeated for the maximum number of

iterations.

A load balancing algorithm was developed which balances this type of data parallel loop. The

algorithm works only for data parallel loops with independent loop iterations. That is, each iteration

does not depend on any values computed in previous iterations. The algorithm has the following

properties:

� Speeds up the computation of unbalanced data sets

� Has a low added cost to the computation of balanced data sets

� Utilizes the existing memory space

� Utilizes the existing code with simple modi�cations

Clearly, the algorithm should speed up the computation of unbalanced data sets. Any extra work

to balance the data adds a cost to the computation of balanced data sets. If it is unknown whether

the input data sets are balanced or unbalanced, a tradeo� can be made: non-optimal speed up of

the unbalanced computations for a lower added cost to balanced ones. The renderer's input data sets

will be balanced or unbalanced depending on the algorithm and the data used to generate them. For

example, an isosurface algorithm will generate a fairly balanced data set if the input data is dense and

on a uniform grid since the polygon sizes will be bounded by the cell size of the grid. An isosurface

algorithm which performs a coplanar merge on its resulting polygons, however, can create unbalanced

data sets since some polygons might be substantially larger than others. Unbalanced data sets can also

result from the application of viewing transforms in the renderer. For example, applying a wide-angle

perspective view transform to a balanced data set can result in an unbalanced data set, since, in the

transformed data set, polygons closer to the viewer are much larger than polygons far from the viewer.

The load balancing algorithm utilizes existing memory space so that the full memory of the machine

can be devoted to rendering the data sets. This is especially important for the massive data set sizes

the renderer must handle. Since developers can utilize their existing code, the algorithm can easily be

used as a mechanism for load balancing other loops of this form.

The load balancing algorithm is implemented in the data parallel programming model. In this model,

virtual processors provide the abstraction of having one processor per data element of each parallel

array. The data elements from each parallel array are stored in each virtual processor's data space. For

example, in the scan conversion loop, each virtual processor stores information about one polygon: the

x,y,z coordinates of each vertex, color and normal information. Each virtual processor's data space also

contains the number of loop iterations needed to process the loop data.

A virtual processor is freed if it will stay idle during all remaining loop iterations. Virtual processors

are freed before and during the execution of the loop. Virtual processors are freed before loop execution

if they are not assigned work initially. In the scan conversion loop, virtual processors are not assigned



work initially if the polygons in their data space are clipped or back-face culled. Polygons are clipped

when they lie outside the user's viewport window. Zooming in on the objects being viewed can cause

polygons to be clipped. Polygons are back-face culled when their surface normals point away from the

viewing direction. Virtual processors are freed during loop execution when they complete their speci�ed

number of iterations.

Any free virtual processors can take on new work. A virtual processor takes on new work by copying

the relevant data from an active heavily loaded virtual processor's data space into its own. The remaining

iterations of the active virtual processor are then split between all processors which share the data. For

example, if the work is split between two virtual processors, one processor will compute the lower half

of the iterations and the other the upper half. By splitting the iterations between virtual processors,

the loop iterations are balanced across the virtual processors and the maximum number of iterations

needed to complete the loop is reduced.

A distribution function is used to compute how free virtual processors are assigned new work. The

inputs to the function are the number of free virtual processors and the iteration array. The output

of the function is a distribution. A distribution is a parallel array which contains the number of free

virtual processors assigned to each active data space.

Computing an optimal sequence of distributions is np-complete. So, the load balancing algorithm

uses a heuristic function to calculate a distribution. A new distribution is computed at the beginning

of each loop iteration using the current number of free virtual processors and iteration array values.

The distribution function is computed as follows: �rst, the average of the current number of iterations

is computed. The average is computed by summing the current active iteration array values and dividing

this sum by the number of data elements in the iteration array. The average is used to decide how free

virtual processors are assigned to active data spaces. If there are more free virtual processors than

active virtual processors, the free processors are distributed equally to all active processor's data spaces

whose iterations are greater than the average. The remainder of the free processors are left idle. If

there are less free virtual processors than active processors then the previous distribution is returned,

resulting in no new load balancing.

The average is used because it is a lower bound on the new maximum number of iterations that can

be achieved by any distribution of free processors. Since the average is the lower bound, there is no

reason to assign free processors to data spaces with iterations less than or equal to the average.

To distribute active data spaces to free virtual processors, a sequence of communication steps is

executed. These steps should only be executed when the iterations saved outweigh the communication

costs. In order to assess when it is bene�cial to distribute free processors, information about the new

distribution is computed and timing statistics are taken.

The new maximum number of loop iterations with the current distribution is computed to decide

whether the communication steps should occur. This value is computed by adding one to all distribution

array elements where their corresponding iteration array elements are active. This addition incorporates

all the currently active processors in the iteration array into the distribution array. The iteration array

is then divided by the distribution array. This result calculates what the value of the iterations will be

after has splitting occurs. The maximum of this result is the new maximum number of iterations.

Timing statistics are also computed to assess whether the communication steps should occur. Each

time the communication steps are executed, they are timed and an average of the execution times is

updated. The body of the loop is also timed, and an average of the execution times is updated each

iteration. The ratio of the average communication step time and the average loop body time gives a

measure of the time for the communication steps in terms of loop iterations. An initial estimate of this

ratio is supplied by the developer.



Using the new maximum iteration and ratio value, a test is computed: if the new maximum number

of iterations plus the ratio is less than the current maximum iteration than it is pro�table to distribute

the free virtual processors.

At the beginning each loop iteration, the free virtual processors are counted and the distribution

function is called. The test is executed. If the test is successful, active data spaces are distributed

to the free virtual processors. The following pseudo-code provides an overview of the load balancing

algorithm:

max_iteration = MAXIMUM_VALUE(iter)

loop until max_iteration

compute the distribution and the

new maximum number of iterations

based on current number of free

virtual processors

ratio = INT(average communication

time / average loop time)

if (new_max_iteration + ratio .lt.

max_iteration) then

do load balancing communication

steps

max_iteration = new_max_iteration

endif

...loop code...

endloop

5 Experiments

Several experiments were run on both the CM-200 and the CM-5. All timings were for an image size

of 512 � 512. A smaller image size would speed up the rendering and a larger size would slow down

the rendering. Table 1 shows the times for rendering a data set consisting of 228,288 small polygons on

the CM-200 with partition sizes of 16K, 32K and 64K. Table 3 shows the times for rendering the same

data set on the CM-5 with partition sizes of 32, 64, 128, 256, and 512 nodes. Table 2 shows the times

for rendering a data set with large polygons while Table 4 shows the times for rendering the same data

set on the CM-5. The rows of each table contain data for three di�erent viewing angles. The �rst row

is the data for a viewing angle of (0,0), the second row is the data for a viewing angle of (45,45), and

the third row is the data for a viewing angle of (90,90). The columns are partition sizes for each of the

MPPs. All times are reported in seconds. The data set with small polygons �ts our assumption that

geometry generated from scienti�c data on massively parallel computers will typically be composed of

many small polygons (polygons which have few scanlines passing through them). The data set with

large polygons violates this assumption and the times are given to show the e�ect. Figure 2 shows the



Times (sec) Polygons/second

16K 32K 64K 16K 32K 64K

1.894 1.04 0.571 120,532 219,507 399,803

1.637 0.848 0.482 139,455 269,207 473,626

1.162 0.625 0.335 196,461 365,260 681,456

Table 1: Rendering of Small Polygons on CM-200

Times (sec) Polygons/second

16K 32K 64K 16K 32K 64K

22.094 15.005 8.574 9,866 14,527 25,423

18.015 11.855 6.834 12,100 18,387 31,896

10.548 6.789 4.039 20,665 32,108 53,969

Table 2: Rendering of Large Polygons on CM-200

results of rendering a data set generated from a hydro-dynamics code running on the CM-200 and the

CM-54.

As can be seen, the times shown for the data set containing large polygons are an order of magnitude

slower on both the CM-200 and the CM-5. This is because some polygons covered over 3=4 of the

image. Recall that as the size of the polygons increases, the polygon rasterizing speed decreases due to

the iterative loops over the maximum polygon height and the maximum scan line size. The addition of

the load balancing algorithm to the renderer helps alleviate this problem.

On a 64K CM-200 partition, rendering speeds of over 600,000 polygons per second were achieved on

the small polygon data set. These are disjoint polygons and we have found this to be three times the

speed of our SGI 380/VGX, whose published rendering times are over one million meshed polygons per

second. However, the workstation rendering speed is dramatically reduced when the polygons to be

rendered are not in cache and the polygons are disjoint rather than meshed. On a 512 node partition

of the CM-5, rendering speeds of close to one million non-meshed polygons per second were recorded.

This exceeds the speed of current state of the art dedicated graphics hardware.

Figure 3 shows the speedup of the algorithm run on the CM-200 while Figure 4 shows the speedup of

the algorithm run on the CM-5. The speedup curves are relative to the implementation on the smallest

partition available for each of the MPPs. While the demonstrated speedup is not linear, the graphs

show that near linear speedup for the data set with small polygons was achieved. Rendering the data

set with large polygons exhibited worse speedup due to the large number of iterations being performed.

The renderer's scan conversion loop has been modi�ed to use the load balancing algorithm. Load

balancing the scan conversion loop improves the renderer's performance on unbalanced data sets. These

improvements are detailed in Tables 5 and 6. On balanced data sets, performance is slightly degraded,

by 2 to 7 percent of the render's performance without the load balancing modi�cations. Performance is

especially improved on data sets which have been zoomed and clipped because of the many free virtual

processors available before the loop executes. These improvements are shown in Tables 7 and 8. The

4See the color plates for a better picture of Figure 2.



Times (sec)

32 64 128 256 512

5.756 4.754 1.482 0.796 0.463

3.402 2.877 0.966 0.498 0.302

2.476 1.048 0.550 0.401 0.236

Polygons/second

32 64 128 256 512

39,660 48,020 154,040 286,794 493,062

67,104 79,349 236,322 458,409 755,920

92,200 217,832 415,069 569,296 967,322

Table 3: Rendering of Small Polygons on CM-5

Times (sec)

32 64 128 256 512

37.326 20.169 12.488 8.466 6.220

30.684 16.034 9.758 6.393 4.717

17.261 9.353 5.543 3.594 2.590

Polygons/second

32 64 128 256 512

5,939 10,807 17,455 25,746 35,045

7,104 13,595 22,338 34,097 46,212

12,628 23,306 39,325 60,651 84,163

Table 4: Rendering of Large Polygons on CM-5



Figure 2: Image of Oil Well Perforator with 355,948 Small Polygons
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Figure 3: CM-200 speed up
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Figure 4: CM-5 speed up

Times (sec)

32 64 128 256 512

29.387 17.580 11.029 7.544 5.712

22.585 13.288 8.235 5.624 4.201

16.034 8.985 5.465 3.650 2.832

Table 5: Rendering of Unbalanced Polygons without Load Balancing on CM-5

times were obtained by appling a scale factor of 3 to the unbalanced data set. With a viewing angle of

(0,0) on this zoomed and clipped unbalanced data set, performance of the render with load balancing

is 3 to 6 times faster than the performance of the render without the load balancing modi�cations.

The unbalanced data set was generated by merging the output polygons of an isosurface algorithm.

This was done to reduce the number of polygons in the data set. The original isosurface polygons

are shown in Figure 55. The merged isosurface polygons are shown in Figure 6. Note the di�erence

between the data sets, the polygons in the original data set are approximately the same size whereas

the polygons in the merged data set have many di�erent sizes, varying from extremely large polygons

to extremely small polygons.

Load balancing the Z-bu�ering loop does not currently improve the renderer's performance. A small

portion of the degradation results from the overhead of doing the load balancing (i.e. the initialization,

distribution function calculation and testing). The larger portion results from timing uctuations.

The body of the Z-bu�ering loop is a single communication call. The execution time of this single

communication call varies greatly. The communication ratio used to decide when to load balance is

inaccurate because the average execution time of the single communication call varies so much over time.

Unpro�table communication steps take place and the overall performance of the renderer degrades. This

is a limitation of the load balancing algorithm: if the communication ratio is inaccurate, performance

5See the color plates for a better picture of Figure 5 and Figure 6.



Times (sec)

32 64 128 256 512

11.482 7.047 4.180 2.368 1.502

12.381 7.284 4.128 2.481 1.556

13.191 7.194 4.371 2.561 1.765

Table 6: Rendering of Unbalanced Polygons with Load Balancing on CM-5

Times (sec)

32 64 128 256 512

63.456 37.178 23.169 16.062 12.291

55.330 31.446 19.351 13.250 10.493

13.462 7.453 4.385 2.856 2.150

Table 7: Rendering of Zoomed and Clipped Unbalanced Polygons without Load Balancing on CM-5

Times (sec)

32 64 128 256 512

18.244 10.063 5.666 3.205 2.023

36.318 19.679 10.778 5.882 3.733

13.811 7.711 4.453 1.767 1.234

Table 8: Rendering of Zoomed and Clipped Unbalanced Polygons with Load Balancing on CM-5

Figure 5: Closeup Image of Original Polygon Edges



Figure 6: Closeup Image of Merged Polygon Edges

can be degraded.

6 Conclusions

This paper described a data parallel method of polygon scan conversion allowing the visualization of

large 3D simulations directly from a massively parallel processor. This allows scientists to evaluate the

simulation as it is running or shortly thereafter without the need to transfer huge amounts of data from

a massively parallel processor to a graphics workstation. Issues involving load balancing were addressed

and a data parallel load balancing algorithm was presented. The load balancing algorithm achieves

the desired speed tradeo� between the computation of unbalanced data sets and balanced data sets by

using a simple heuristic function to calculate the distribution of free virtual processors. The algorithm

improves performance and only utilizes existing memory space. It does this by making use of virtual

processors which are freed before and during loop execution. Performance data was provided that

showed the rendering method can out-perform high-end commercially available graphics workstations.
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